Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 40(24): e108684, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34726281

RESUMO

Plant photoperiodic growth is coordinated by interactions between circadian clock and light signaling networks. How post-translational modifications of clock proteins affect these interactions to mediate rhythmic growth remains unclear. Here, we identify five phosphorylation sites in the Arabidopsis core clock protein TIMING OF CAB EXPRESSION 1 (TOC1) which when mutated to alanine eliminate detectable phosphorylation. The TOC1 phospho-mutant fails to fully rescue the clock, growth, and flowering phenotypes of the toc1 mutant. Further, the TOC1 phospho-mutant shows advanced phase, a faster degradation rate, reduced interactions with PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) and HISTONE DEACETYLASE 15 (HDA15), and poor binding at pre-dawn hypocotyl growth-related genes (PHGs), leading to a net de-repression of hypocotyl growth. NUCLEAR FACTOR Y subunits B and C (NF-YB/C) stabilize TOC1 at target promoters, and this novel trimeric complex (NF-TOC1) acts as a transcriptional co-repressor with HDA15 to inhibit PIF-mediated hypocotyl elongation. Collectively, we identify a molecular mechanism suggesting how phosphorylation of TOC1 alters its phase, stability, and physical interactions with co-regulators to precisely phase PHG expression to control photoperiodic hypocotyl growth.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fator de Ligação a CCAAT/metabolismo , Mutação , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Fosforilação , Proteólise , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
2.
Biochem Biophys Res Commun ; 533(4): 806-812, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32993965

RESUMO

Reversible histone acetylation and deacetylation play crucial roles in modulating light-regulated gene expression during seedling development. However, it remains largely unknown how histone-modifying enzymes interpose within the molecular framework of light signaling network. In this study, we show that AtHDA15 positively regulates photomorphogenesis by directly binding to COP1, a master regulator in the repression of photomorphogenesis. hda15 T-DNA knock-out and RNAi lines exhibited light hyposensitivity with reduced HY5 and PIF3 protein levels leading to long hypocotyl phenotypes in the dark while its overexpression leads to increased HY5 concentrations and short hypocotyl phenotypes. In vivo and in vitro binding assays show that HDA15 directly interacts with COP1 inside the nucleus modulating COP1's repressive activities. As COP1 is established to act within the nucleus to regulate specific transcription factors associated with growth and development in skotomorphogenesis, the direct binding by HDA15 is predicted to abrogate activities of COP1 in the presence of light and modulate its repressive activities in the dark. Our results append the mounting evidence for the role of HDACs in post-translational regulation in addition to their well-known histone modifying functions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Histona Desacetilases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Histona Desacetilases/genética , Histona Desacetilases/fisiologia , Hipocótilo/anatomia & histologia , Hipocótilo/crescimento & desenvolvimento , Luz , Mutação , Biossíntese de Proteínas
3.
New Phytol ; 218(1): 253-268, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29250804

RESUMO

Stomatal immunity restricts bacterial entry to leaves through the recognition of microbe-associated molecular patterns (MAMPs) by pattern-recognition receptors (PRRs) and downstream abscisic acid and salicylic acid signaling. Through a reverse genetics approach, we characterized the function of the L-type lectin receptor kinase-V.2 (LecRK-V.2) and -VII.1 (LecRK-VII.1). Analyses of interactions with the PRR FLAGELLIN SENSING2 (FLS2) were performed by co-immunoprecipitation and bimolecular fluorescence complementation and whole-cell patch-clamp analyses were used to evaluate guard cell Ca2+ -permeable cation channels. The Arabidopsis thaliana LecRK-V.2 and LecRK-VII.1 and notably their kinase activities were required for full activation of stomatal immunity. Knockout lecrk-V.2 and lecrk-VII.1 mutants were hyper-susceptible to Pseudomonas syringae infection and showed defective stomatal closure in response to bacteria or to the MAMPs flagellin and EF-Tu. By contrast, Arabidopsis over-expressing LecRK-V.2 or LecRK-VII.1 demonstrated a potentiated stomatal immunity. LecRK-V.2 and LecRK-VII.1 are shown to be part of the FLS2 PRR complex. In addition, LecRK-V.2 and LecRK-VII.1 were critical for methyl jasmonate (MeJA)-mediated stomatal closure, notably for MeJA-induced activation of guard cell Ca2+ -permeable cation channels. This study highlights the role of LecRK-V.2 and LecRK-VII.1 in stomatal immunity at the FLS2 PRR complex and in MeJA-mediated stomatal closure.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/fisiologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Imunidade Vegetal/efeitos dos fármacos , Estômatos de Plantas/imunologia , Estômatos de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Acetatos/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Resistência à Doença/efeitos dos fármacos , Flagelina/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Mutação/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Espécies Reativas de Oxigênio/metabolismo
4.
Appl Environ Microbiol ; 83(16)2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28625996

RESUMO

Lactococcus lactis is one of the most commonly used lactic acid bacteria in the dairy industry. Activation of competence for natural DNA transformation in this species would greatly improve the selection of novel strains with desired genetic traits. Here, we investigated the activation of natural transformation in L. lactis subsp. cremoris KW2, a strain of plant origin whose genome encodes the master competence regulator ComX and the complete set of proteins usually required for natural transformation. In the absence of knowledge about competence regulation in this species, we constitutively overproduced ComX in a reporter strain of late competence phase activation and showed, by transcriptomic analyses, a ComX-dependent induction of all key competence genes. We further demonstrated that natural DNA transformation is functional in this strain and requires the competence DNA uptake machinery. Since constitutive ComX overproduction is unstable, we alternatively expressed comX under the control of an endogenous xylose-inducible promoter. This regulated system was used to successfully inactivate the adaptor protein MecA and subunits of the Clp proteolytic complex, which were previously shown to be involved in ComX degradation in streptococci. In the presence of a small amount of ComX, the deletion of mecA, clpC, or clpP genes markedly increased the activation of the late competence phase and transformability. Altogether, our results report the functionality of natural DNA transformation in L. lactis and pave the way for the identification of signaling mechanisms that trigger the competence state in this species.IMPORTANCE Lactococcus lactis is a lactic acid bacterium of major importance, which is used as a starter species for milk fermentation, a host for heterologous protein production, and a delivery platform for therapeutic molecules. Here, we report the functionality of natural transformation in L. lactis subsp. cremoris KW2 by the overproduction of the master competence regulator ComX. The developed procedure enables a flexible approach to modify the chromosome with single point mutation, sequence insertion, or sequence replacement. These results represent an important step for the genetic engineering of L. lactis that will facilitate the design of strains optimized for industrial applications. This will also help to discover natural regulatory mechanisms controlling competence in the genus Lactococcus.

5.
Mol Syst Biol ; 8: 606, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22929616

RESUMO

Leaves have a central role in plant energy capture and carbon conversion and therefore must continuously adapt their development to prevailing environmental conditions. To reveal the dynamic systems behaviour of leaf development, we profiled Arabidopsis leaf number six in depth at four different growth stages, at both the end-of-day and end-of-night, in plants growing in two controlled experimental conditions: short-day conditions with optimal soil water content and constant reduced soil water conditions. We found that the lower soil water potential led to reduced, but prolonged, growth and an adaptation at the molecular level without a drought stress response. Clustering of the protein and transcript data using a decision tree revealed different patterns in abundance changes across the growth stages and between end-of-day and end-of-night that are linked to specific biological functions. Correlations between protein and transcript levels depend on the time-of-day and also on protein localisation and function. Surprisingly, only very few of >1700 quantified proteins showed diurnal abundance fluctuations, despite strong fluctuations at the transcript level.


Assuntos
Adaptação Biológica/genética , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Proteoma/metabolismo , Transcriptoma/fisiologia , Arabidopsis/metabolismo , Análise por Conglomerados , Escuridão , Secas , Perfilação da Expressão Gênica/métodos , Luz , Fotoperíodo , Folhas de Planta/metabolismo , Transpiração Vegetal/fisiologia , Proteômica/métodos , Solo , Água/metabolismo
6.
Plant Physiol ; 157(4): 2044-55, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22010109

RESUMO

Enormous progress has been achieved understanding the molecular mechanisms regulating endoreduplication. By contrast, how this process is coordinated with the cell cycle or cell expansion and contributes to overall growth in multicellular systems remains unclear. A holistic approach was used here to give insight into the functional links between endoreduplication, cell division, cell expansion, and whole growth in the Arabidopsis (Arabidopsis thaliana) leaf. Correlative analyses, quantitative genetics, and structural equation modeling were applied to a large data set issued from the multiscale phenotyping of 200 genotypes, including both genetically modified lines and recombinant inbred lines. All results support the conclusion that endoreduplication in leaf cells could be controlled by leaf growth itself. More generally, leaf growth could act as a "hub" that drives cell division, cell expansion, and endoreduplication in parallel. In many cases, this strategy allows compensations that stabilize leaf area even when one of the underlying cellular processes is limiting.


Assuntos
Arabidopsis/citologia , Divisão Celular , Crescimento Celular , Duplicação Gênica , Folhas de Planta/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Mapeamento Cromossômico , Genótipo , Análise Multivariada , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ploidias , Locos de Características Quantitativas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
EMBO J ; 30(2): 355-63, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21131907

RESUMO

Because of their sessile life style, plants have evolved the ability to adjust to environmentally harsh conditions. An important aspect of stress adaptation involves the reprogramming of the cell cycle to ensure optimal growth. The atypical E2F transcription factor DP-E2F-like 1 (E2Fe/DEL1) had been found previously to be an important regulator of the endocycle onset. Here, a novel role for E2Fe/DEL1 was identified as a transcriptional repressor of the type-II cyclobutane pyrimidine dimer-photolyase DNA repair gene PHR1. Upon ultraviolet-B (UV-B) treatment, plants knocked out for E2Fe/DEL1 had improved DNA repair abilities when compared with control plants, whereas those overexpressing it performed less well. Better DNA repair allowed E2Fe/DEL1 knockout plants to resume endoreduplication faster than control plants, contributing in this manner to UV-B radiation resistance by compensating the stress-induced reduction in cell number by ploidy-dependent cell growth. As E2Fe/DEL1 levels decreased upon UV-B treatment, we hypothesize that the coordinated transcriptional induction of PHR1 with the endoreduplication onset contributes to the adaptation of plants exposed to UV-B stress.


Assuntos
Adaptação Biológica/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Replicação do DNA/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Estresse Fisiológico/efeitos da radiação , Luz Solar/efeitos adversos , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Primers do DNA/genética , Reparo do DNA/efeitos da radiação , Replicação do DNA/genética , Citometria de Fluxo , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Inativação de Genes , Reação em Cadeia da Polimerase , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Raios Ultravioleta
8.
Plant J ; 56(5): 779-92, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18665917

RESUMO

In contrast to animal growth, plant growth is largely post-embryonic. Therefore plants have developed new mechanisms to precisely regulate cell proliferation by means of internal and external stimuli whilst the general core cell cycle machinery is conserved between eukaryotes. In this work we demonstrate a role for the Arabidopsis thaliana DNA-binding-with-one-finger (DOF) transcription factor OBP1 in the control of cell division upon developmental signalling. Inducible overexpression of OBP1 resulted in a significant overrepresentation of cell cycle genes among the upregulated transcripts. Direct targets of OBP1, as verified by chromatin immunoprecipitation, include at least the core cell cycle gene CYCD3;3 and the replication-specific transcription factor gene AtDOF2;3. Consistent with our molecular data, short-term activation of OBP1 in cell cultures affected cell cycle re-entry, shortening the duration of the G(1) phase and the overall length of the cell cycle, whilst constitutive overexpression of OBP1 in plants influenced cell size and cell number, leading to a dwarfish phenotype. Expression during embryogenesis, germination and lateral root initiation suggests an important role for OBP1 in cell cycle re-entry, operating as a transcriptional regulator of key cell cycle genes. Our findings provide significant input into our understanding of how cell cycle activity is incorporated into plant growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/genética , Fatores de Transcrição/genética
9.
Plant Cell Environ ; 29(7): 1273-83, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17080949

RESUMO

Leaf area expansion is affected by environmental conditions because of differences in cell number and/or cell size. Increases in the DNA content (ploidy) of a cell by endoreduplication are related to its size. The aim of this work was to determine how cell ploidy interacts with the regulation of cell size and with leaf area expansion. The approach used was to grow Arabidopsis thaliana plants performing increased or decreased rounds of endoreduplication under shading and water deficit. The shading and water deficit treatments reduced final leaf area and cell number; however, cell area was increased and decreased, respectively. These differences in cell size were unrelated to alterations of the endocycle, which was reduced by these treatments. The genetic modification of the extent of endoreduplication altered leaf growth responses to shading and water deficit. An increase in the extent of endoreduplication in a leaf rendered it more sensitive to the shade treatment but less sensitive to water deficit conditions. The link between the control of whole organ and individual cell expansion under different environmental conditions was demonstrated by the correlation between the plasticity of cell size and the changes in the duration of leaf expansion.


Assuntos
Arabidopsis/citologia , Tamanho Celular , Duplicação Gênica , Folhas de Planta/citologia , Meio Ambiente , Luz , Epiderme Vegetal/citologia , Folhas de Planta/efeitos da radiação , Solo , Fatores de Transcrição/metabolismo , Água
10.
Plant Cell Environ ; 29(12): 2216-27, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17081254

RESUMO

Genetic variability in the plasticity of leaf area expansion in response to water deficit has been reported in Arabidopsis thaliana. Here, the objective was to identify the underlying dynamic and cellular processes involved in this variability. Twenty-five accessions were subjected to identical soil water deficit treatments. In all accessions, the plasticity of leaf production was low compared with that of individual leaf expansion. A subset of accessions was selected for further dissection of individual leaf expansion into its underlying variables: the rate and duration of leaf expansion and epidermal cell number and area. In all accessions, water deficit had opposite effects on the rate and duration of leaf expansion. The accumulation of these effects was reflected in changes in final leaf area. At the cellular level, moderate water deficits had opposite effects on cell number and cell size, but more severe ones reduced both variables. The importance of these opposing effects is highlighted by the behaviour of the accession An-1, for which the compensation between the decrease in leaf expansion rate and the increase in the duration of expansion is total. This dynamic plasticity in response to water deficit is not detectable when only final measurements are done.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Solo , Água/metabolismo , Arabidopsis/citologia , Contagem de Células , Tamanho Celular , Fenótipo , Folhas de Planta/citologia , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...